Abstract
Treatment of cetuximab-resistant colorectal cancer (CRC) is a global healthcare problem. This study aimed to assess the effects of radiotherapy on cetuximab-resistant CRC and explore the underlying mechanism. We established a cetuximab-resistant HCT116 cell line (HCT116-R) by extracorporeal shock. Differentially expressed mRNAs were screened from cells treated with different radiation doses using second-generation high-throughput sequencing. Sequence data showed that ACY1 was significantly downregulated in HCT116-R cells after irradiation. Analysis of the GEO and TCGA datasets revealed that high ACY1 expression was associated with lymph node metastasis and a poor prognosis in CRC patients. In addition, immunohistochemistry results from CRC patients revealed that ACY1 protein expression was related to cetuximab resistance and lymph node metastasis. These findings suggested that ACY1 may function as an oncogene to promote CRC progression and regulate the radiosensitivity of cetuximab-resistant CRC. As expected, ACY1 silencing weakened the proliferation, migration, and invasion abilities of HCT116-R cells after radiotherapy. Mechanistically, TCGA data demonstrated that ACY1 expression was closely related to the Wnt/β-catenin pathway in CRC. We validated that radiotherapy first reduced β-catenin levels, followed by decreased expression of the metastasis-related protein E-cadherin. Silencing ACY1 dramatically enhanced these changes in β-catenin and E-cadherin after radiotherapy. In conclusion, ACY1 downregulation could enhance the radiosensitivity of cetuximab-resistant CRC by inactivating Wnt/β-catenin signaling, implying that ACY1 may serve as a radiotherapy target for cetuximab-resistant CRC.
Funder
New Medical Union Foundation of the University of Science and Technology of China
Natural Science Foundation of Anhui Province
Foundation of the West Branch of the First Affiliated Hospital of the University of Science and Technology of China
National Natural Science Foundation of China
Provincial Natural Science Research Project of Anhui Colleges