Abstract
Multidrug resistance (MDR) associated with the overexpression of ABC transporters is one of the key causes of chemotherapy failure. Various compounds blocking the function and/or downregulating the expression of these transporters have been developed over the last few decades. However, their potency and toxicity have always been a concern. In this report, we found that BMS-599626 is a highly potent inhibitor of the ABCG2 transporter, inhibiting its efflux function at 300 nM. Our study repositioned BMS-599626, a highly selective pan-HER kinase inhibitor, as a chemosensitizer in ABCG2-overexpressing cell lines. As shown by the cytotoxicity assay results, BMS-599626, at noncytotoxic concentrations, sensitizes ABCG2-overexpressing cells to topotecan and mitoxantrone, two well-known substrates of ABCG2. The results of our radioactive drug accumulation experiment show that the ABCG2-overexpressing cells, treated with BMS-599626, had an increase in the accumulation of substrate chemotherapeutic drugs, as compared to their parental subline cells. Moreover, BMS-599626 did not change the protein expression or cell surface localization of ABCG2 and inhibited its ATPase activity. Our in-silico docking study also supports the interaction of BMS-599626 with the substrate-binding site of ABCG2. Taken together, these results suggest that administration of chemotherapeutic drugs, along with nanomolar concentrations (300 nM) of BMS-599626, may be effective against ABCG2-mediated MDR in clinical settings.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advances in HER2-Targeted Therapies: From monoclonal antibodies to dual inhibitors developments in cancer treatment;Bioorganic Chemistry;2024-10
2. To Investigate Growth Factor Receptor Targets and Generate Cancer
Targeting Inhibitors;Current Topics in Medicinal Chemistry;2023-12
3. Recent updates on 1,2,3‐, 1,2,4‐, and 1,3,5‐triazine hybrids (2017–present): The anticancer activity, structure–activity relationships, and mechanisms of action;Archiv der Pharmazie;2022-11-13
4. In silico drug repurposing and lipid bilayer molecular dynamics puzzled out potential breast cancer resistance protein (BCRP/ABCG2) inhibitors;Journal of Biomolecular Structure and Dynamics;2022-09-19
5. KIFC3 Promotes Proliferation, Migration, and Invasion in Colorectal Cancer via PI3K/AKT/mTOR Signaling Pathway;Frontiers in Genetics;2022-06-22