Machine Learning-Based Radiomic Features on Pre-Ablation MRI as Predictors of Pathologic Response in Patients with Hepatocellular Carcinoma Who Underwent Hepatic Transplant

Author:

Tabari Azadeh1ORCID,D’Amore Brian1,Cox Meredith1,Brito Sebastian2,Gee Michael S.1,Wehrenberg-Klee Eric1,Uppot Raul N.1,Daye Dania1

Affiliation:

1. Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA

2. Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA

Abstract

Background: The aim was to investigate the role of pre-ablation tumor radiomics in predicting pathologic treatment response in patients with early-stage hepatocellular carcinoma (HCC) who underwent liver transplant. Methods: Using data collected from 2005–2015, we included adult patients who (1) had a contrast-enhanced MRI within 3 months prior to ablation therapy and (2) underwent liver transplantation. Demographics were obtained for each patient. The treated hepatic tumor volume was manually segmented on the arterial phase T1 MRI images. A vector with 112 radiomic features (shape, first-order, and texture) was extracted from each tumor. Feature selection was employed through minimum redundancy and maximum relevance using a training set. A random forest model was developed based on top radiomic and demographic features. Model performance was evaluated by ROC analysis. SHAP plots were constructed in order to visualize feature importance in model predictions. Results: Ninety-seven patients (117 tumors, 31 (32%) microwave ablation, 66 (68%) radiofrequency ablation) were included. The mean model for end-stage liver disease (MELD) score was 10.5 ± 3. The mean follow-up time was 336.2 ± 179 days. Complete response on pathology review was achieved in 62% of patients at the time of transplant. Incomplete pathologic response was associated with four features: two first-order and two GLRM features using univariate logistic regression analysis (p < 0.05). The random forest model included two radiomic features (diagnostics maximum and first-order maximum) and four clinical features (pre-procedure creatinine, pre-procedure albumin, age, and gender) achieving an AUC of 0.83, a sensitivity of 82%, a specificity of 67%, a PPV of 69%, and an NPV of 80%. Conclusions: Pre-ablation MRI radiomics could act as a valuable imaging biomarker for the prediction of tumor pathologic response in patients with HCC.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3