Heat Modulation of Intrinsic MR Contrasts for Tumor Characterization

Author:

Tarasek Matthew,Akin Oguz,Roberts JeannetteORCID,Foo Thomas,Yeo DesmondORCID

Abstract

(1) Background: The longitudinal relaxation time (T1), transverse relaxation time (T2), water proton chemical shift (CS), and apparent diffusion coefficient (ADC) are MR quantities that change with temperature. In this work, we investigate heat-induced intrinsic MR contrast types to add salient information to conventional MR imaging to improve tumor characterization. (2) Methods: Imaging tests were performed in vivo using different rat tumor models. The rats were cooled/heated to steady-state temperatures from 26–36 °C and quantitative measurements of T1, T2, and ADC were obtained. Temperature maps were measured using the proton resonance frequency shift (PRFS) method during the heating and cooling cycles. (3) Results: All tissue samples show repeatable relaxation parameter measurement over a range of 26–36 °C. Most notably, we observed a more than 3.3% change in T1/°C in breast adenocarcinoma tumors compared to a 1% change in benign breast fibroadenoma lesions. In addition, we note distinct values of T2/°C change for rat prostate carcinoma cells compared to benign tissue. (4) Conclusion: These findings suggest the possibility of improving MR imaging visualization and characterization of tissue with heat-induced contrast types. Specifically, these results suggest that the temporal thermal responses of heat-sensitive MR imaging contrast mechanisms in different tissue types contain information for improved (i) characterization of tumor/tissue boundaries for diagnostic and therapy purposes, and (ii) characterization of salient behavior of tissues, e.g., malignant versus benign tumors.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3