Validation of a Machine Learning Model to Predict Immunotherapy Response in Head and Neck Squamous Cell Carcinoma

Author:

Lee Andrew Sangho1ORCID,Valero Cristina1ORCID,Yoo Seong-keun2ORCID,Vos Joris L.1,Chowell Diego2,Morris Luc G. T.1ORCID

Affiliation:

1. Head and Neck Service and Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

2. Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

Abstract

Head and neck squamous-cell carcinoma (HNSCC) is a disease with a generally poor prognosis; half of treated patients eventually develop recurrent and/or metastatic (R/M) disease. Patients with R/M HNSCC generally have incurable disease with a median survival of 10 to 15 months. Although immune-checkpoint blockade (ICB) has improved outcomes in patients with R/M HNSCC, identifying patients who are likely to benefit from ICB remains a challenge. Biomarkers in current clinical use include tumor mutational burden and immunohistochemistry for programmed death-ligand 1, both of which have only modest predictive power. Machine learning (ML) has the potential to aid in clinical decision-making as an approach to estimate a tumor’s likelihood of response or a patient’s likelihood of experiencing clinical benefit from therapies such as ICB. Previously, we described a random forest ML model that had value in predicting ICB response using 11 or 16 clinical, laboratory, and genomic features in a pan-cancer development cohort. However, its applicability to certain cancer types, such as HNSCC, has been unknown, due to a lack of cancer-type-specific validation. Here, we present the first validation of a random forest ML tool to predict the likelihood of ICB response in patients with R/M HNSCC. The tool had adequate predictive power for tumor response (area under the receiver operating characteristic curve = 0.65) and was able to stratify patients by overall (HR = 0.53 [95% CI 0.29–0.99], p = 0.045) and progression-free (HR = 0.49 [95% CI 0.27–0.87], p = 0.016) survival. The overall accuracy was 0.72. Our study validates an ML predictor in HNSCC, demonstrating promising performance in a novel cohort of patients. Further studies are needed to validate the generalizability of this algorithm in larger patient samples from additional multi-institutional contexts.

Funder

National Center for Advancing Translational Sciences of the National Institutes of Health

US Department of Defense

Geoffrey Beene Cancer Research Center

MSK Population Science Research Program,

Jayme and Peter Flowers Fund

Sebastian Nativo Fund

NIH/NCI Cancer Center Support Grant

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3