Cyclooxygenase and Lipoxygenase Gene Expression in the Inflammogenesis of Colorectal Cancer: Correlated Expression of EGFR, JAK STAT and Src Genes, and a Natural Antisense Transcript, RP11-C67.2.2

Author:

Kennedy Brian M.1,Harris Randall E.1

Affiliation:

1. Colleges of Public Health and Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210-1351, USA

Abstract

We examined the expression of major inflammatory genes, cyclooxygenase-1, 2 (COX1, COX2), arachidonate-5-lipoxygenase (ALOX5), and arachidonate-5-lipoxygenase activating protein (ALOX5AP) among 469 tumor specimens of colorectal cancer in The Cancer Genome Atlas (TCGA). Among 411 specimens without mutations in mismatch repair (MMR) genes, the mean expression of each of the inflammatory genes ranked above the 80th percentile, and the overall mean cyclooxygenase expression (COX1+COX2) ranked in the upper 99th percentile of all genes. Similar levels were observed for 58 cases with MMR mutations. Pearson correlation coefficients exceeding r = 0.70 were observed between COX and LOX mRNA levels with genes of major cell-signaling pathways involved in tumorigenesis (Src, JAK STAT, MAPK, PI3K). We observed a novel association (r = 0.78) between ALOX5 expression and a natural antisense transcript (NAT), RP11-67C2.2, a long non-coding mRNA gene, 462 base pairs in length that is located within the terminal intron of the ALOX5 gene on chromosome 10q11.21. Tumor-promoting genes highly correlated with the expression of COX1, COX2, ALOX5 and ALOX5AP are known to increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the inflammogenesis of colorectal cancer. These genes and the novel NAT, RP1167C2.2 are potential molecular targets for chemoprevention and therapy of colorectal cancer.

Funder

the National Cancer Institute, Bethesda, MD

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference64 articles.

1. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs;Vane;Nat. New Biol.,1971

2. Arachidonic acid metabolism: Role in inflammation;Samuelsson;Z. Rheumatol.,1991

3. Leukotrienes and inflammation;Busse;Am. J. Respir. Crit. Care Med.,1998

4. Cyclooxygenase-2 biology;Curr. Pharm. Des.,2003

5. Prostaglandin endoperoxide synthase: Why two isoforms?;Williams;Am. Physiol. Soc.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3