SOX2-OT Binds with ILF3 to Promote Head and Neck Cancer Progression by Modulating Crosstalk between STAT3 and TGF-β Signaling

Author:

Wang Ru12,Yang Yifan12,Wang Lingwa12,Shi Qian12,Ma Hongzhi12,He Shizhi12,Feng Ling12,Fang Jugao12

Affiliation:

1. Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, 1 Dongjiaominxiang Street, Beijing 100730, China

2. Key Laboratory of Otorhinolaryngology, Head and Neck Surgery, Beijing Institute of Otorhinolaryngology, Beijing 100730, China

Abstract

Long non-coding RNA (lncRNA) is involved in the progression of head and neck squamous cell carcinoma (HNSCC). The molecular mechanism of lncRNA SOX2-OT in HNSCC remains unclear. Therefore, we aimed to elucidate the oncogenic role of SOX2-OT in HNSCC. QRT-PCR analysis was performed in 61 pairs of HNSCC cancer tissues, adjacent normal tissues, and 68 plasma samples confirmed that lncRNA SOX2-OT was overexpressed in cancer tissues and plasma samples, which served as a poor prognostic factor for HNSCC. The FISH assay demonstrated that SOX2-OT was localized in the nucleus and cytoplasm of HNSCC cell lines. Further, the cell function assay confirmed that SOX2-OT promoted cell proliferation and metastasis in vitro and in vivo. RNA pulldown and RIP assay results revealed that SOX2-OT bonds with ILF3 in HNSCC, and the rescue assay confirmed that SOX2-OT played an oncogenic role depending on ILF3 protein expression. Ingenuity pathway analysis and Western blotting indicated that SOX2-OT regulated HNSCC progression by promoting STAT3 phosphorylation and modulating the crosstalk between STAT3 and TGF-β signaling. These results reveal evidence for the role of SOX2-OT in HNSCC progression and metastasis by binding to ILF3, which may serve as a therapeutic target and prognostic biomarker in HNSCC.

Funder

National Natural Science Foundation of China

Beijing Municipal Administration of Hospitals Incubating Program

Beijing Hospitals Authority Youth Program

National Key R&D Program of China

Capital Health Research and Development of Special

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3