Clinical Biomarkers of Tumour Radiosensitivity and Predicting Benefit from Radiotherapy: A Systematic Review

Author:

Bleaney Christopher W.12,Abdelaal Hebatalla2,Reardon Mark1ORCID,Anandadas Carmel2,Hoskin Peter12,Choudhury Ananya12,Forker Laura12

Affiliation:

1. Translational Radiobiology Group, Division of Cancer Sciences, The Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK

2. Department of Clinical Oncology, The Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester M20 4BX, UK

Abstract

Modern advanced radiotherapy techniques have improved the precision and accuracy of radiotherapy delivery, with resulting plans being highly personalised based on individual anatomy. Adaptation for individual tumour biology remains elusive. There is an unmet need for biomarkers of intrinsic radiosensitivity that can predict tumour response to radiation to facilitate individualised decision-making, dosing and treatment planning. Over the last few decades, the use of high throughput molecular biology technologies has led to an explosion of newly discovered cancer biomarkers. Gene expression signatures are now used routinely in clinic to aid decision-making regarding adjuvant systemic therapy. They have great potential as radiotherapy biomarkers. A previous systematic review published in 2015 reported only five studies of signatures evaluated for their ability to predict radiotherapy benefits in clinical cohorts. This updated systematic review encompasses the expanded number of studies reported in the last decade. An additional 27 studies were identified. In total, 22 distinct signatures were recognised (5 pre-2015, 17 post-2015). Seventeen signatures were ‘radiosensitivity’ signatures and five were breast cancer prognostic signatures aiming to identify patients at an increased risk of local recurrence and therefore were more likely to benefit from adjuvant radiation. Most signatures (15/22) had not progressed beyond the discovery phase of development, with no suitable validated clinical-grade assay for application. Very few signatures (4/17 ‘radiosensitivity’ signatures) had undergone any laboratory-based biological validation of their ability to predict tumour radiosensitivity. No signatures have been assessed prospectively in a phase III biomarker-led trial to date and none are recommended for routine use in clinical guidelines. A phase III prospective evaluation is ongoing for two breast cancer prognostic signatures. The most promising radiosensitivity signature remains the radiosensitivity index (RSI), which is used to calculate a genomic adjusted radiation dose (GARD). There is an ongoing phase II prospective biomarker-led study of RSI/GARD in triple negative breast cancer. The results of these trials are eagerly anticipated over the coming years. Future work in this area should focus on (1) robust biological validation; (2) building biobanks alongside large radiotherapy randomised controlled trials with dose variance (to demonstrate an interaction between radiosensitivity signature and dose); (3) a validation of clinical-grade cost-effective assays that are deliverable within current healthcare infrastructure; and (4) an integration with biomarkers of other determinants of radiation response.

Funder

NIHR Manchester Biomedical Research Centre

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3