A Profound Basic Characterization of eIFs in Gliomas: Identifying eIF3I and 4H as Potential Novel Target Candidates in Glioma Therapy

Author:

Krassnig Stefanie,Wohlrab Christina,Golob-Schwarzl Nicole,Raicht Andrea,Schatz Christoph,Birkl-Toeglhofer Anna MariaORCID,Skofler Christina,Gantenbein Nadine,Leoni Marlene,Asslaber Martin,Leber Stefan L.ORCID,Mahdy-Ali Kariem,von Campe Gord,Mayer Marlene,Borenich Andrea,Weis SergeORCID,Benesch Martin,Haybaeck Johannes

Abstract

Glioblastoma (GBM) is an utterly devastating cerebral neoplasm and current therapies only marginally improve patients’ overall survival (OS). The PI3K/AKT/mTOR pathway participates in gliomagenesis through regulation of cell growth and proliferation. Since it is an upstream regulator of the rate-limiting translation initiation step of protein synthesis, controlled by eukaryotic initiation factors (eIFs), we aimed for a profound basic characterization of 17 eIFs to identify potential novel therapeutic targets for gliomas. Therefore, we retrospectively analyzed expressions of mTOR-related proteins and eIFs in human astrocytoma samples (WHO grades I–IV) and compared them to non-neoplastic cortical control brain tissue (CCBT) using immunoblot analyses and immunohistochemistry. We examined mRNA expression using qRT-PCR and additionally performed in silico analyses to observe the influence of eIFs on patients’ survival. Protein and mRNA expressions of eIF3B, eIF3I, eIF4A1, eIF4H, eIF5 and eIF6 were significantly increased in high grade gliomas compared to CCBT and partially in low grade gliomas. However, short OS was only associated with high eIF3I gene expression in low grade gliomas, but not in GBM. In GBM, high eIF4H gene expression significantly correlated with shorter patient survival. In conclusion, we identified eIF3I and eIF4H as the most promising targets for future therapy for glioma patients.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3