CD46–ADC Reduces the Engraftment of Multiple Myeloma Patient-Derived Xenografts

Author:

VanWyngarden Michael J.1,Walker Zachary J.1,Su Yang2,Perez de Acha Olivia1,Stevens Brett M.1,Forsberg Peter A.1,Mark Tomer M.1,Matsui William3ORCID,Liu Bin2,Sherbenou Daniel W.1

Affiliation:

1. Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA

2. Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA

3. Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78705, USA

Abstract

An antibody–drug conjugate (ADC) targeting CD46 conjugated to monomethyl auristatin has a potent anti-myeloma effect in cell lines in vitro and in vivo, and patient samples treated ex vivo. Here, we tested if CD46–ADC may have the potential to target MM-initiating cells (MM-ICs). CD46 expression was measured on primary MM cells with a stem-like phenotype. A patient-derived xenograft (PDX) model was implemented utilizing implanted fetal bone fragments to provide a humanized microenvironment. Engraftment was monitored via serum human light chain ELISA, and at sacrifice via bone marrow and bone fragment flow cytometry. We then tested MM regeneration in PDX by treating mice with CD46–ADC or the nonbinding control–ADC. MM progenitor cells from patients that exhibit high aldehyde dehydrogenase activity also have a high expression of CD46. In PDX, newly diagnosed MM patient samples engrafted significantly more compared to relapsed/refractory samples. In mice transplanted with newly diagnosed samples, CD46–ADC treatment showed significantly decreased engraftment compared to control–ADC treatment. Our data further support the targeting of CD46 in MM. To our knowledge, this is the first study to show preclinical drug efficacy in a PDX model of MM. This is an important area for future study, as patient samples but not cell lines accurately represent intratumoral heterogeneity.

Funder

National Cancer Institute

National Comprehensive Cancer Network Foundation

Paul Ohara II Seed Grant Award

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3