Possible Metastatic Stage-Dependent ILC2 Activation Induces Differential Functions of MDSCs through IL-13/IL-13Rα1 Signaling during the Progression of Breast Cancer Lung Metastasis

Author:

Ito AtsushiORCID,Akama YuichiORCID,Satoh-Takayama Naoko,Saito Kanako,Kato Takuma,Kawamoto EijiORCID,Gaowa ArongORCID,Park Eun JeongORCID,Takao MotoshiORCID,Shimaoka Motomu

Abstract

Breast cancer is the most common cancer in women worldwide, and lung metastasis is one of the most frequent distant metastases. When breast cancer metastasizes to the lung, group 2 innate lymphoid cells (ILC2s) are thought to promote tumor growth via the activation of myeloid-derived suppressor cells (MDSCs), which are known to negatively regulate anticancer immune responses. However, it remains to be elucidated exactly how this ILC2–MDSC interaction is involved in tumor growth during metastases formation. Using a 4T1/LM4 breast cancer mouse model, we found that ILC2s were activated in both the micro- and macrometastatic regions, suggesting sustained activation throughout the metastatic cascades via IL-33/ST2 signaling. Consistent with IL-13 secretion from activated ILC2s, the frequencies of polymorphonuclear (PMN)- and monocytic (M)-MDSCs were also significantly elevated during the progression from micro- to macrometastatic cancer. However, the effects of ILC2-induced MDSC functionality on the microenvironment differed in a metastatic-stage-specific manner. Our findings indicate that ILC2s may induce the immunosuppressive functions of MDSCs during the later stages of metastasis. Concomitantly, ILC2 may instigate extracellular matrix remodeling by PMN-MDSC activation during the early stages of metastasis. These metastatic-stage-specific changes may contribute to metastatic tumor growth in the microenvironment of breast cancer lung metastasis.

Funder

JSPS KAKENHI Grant

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3