Abstract
Neuroendocrine tumours (NETs) arise from secondary epithelial cell lines in the gastrointestinal or respiratory system organs. The rate of development of these tumours varies from an indolent to an aggressive course, typically being initially asymptomatic. The identification of these tumours is difficult, particularly because the primary tumour is often small and undetectable by conventional anatomical imaging. Consequently, diagnosis of NETs is complicated and has been a significant challenge until recently. In the last 30 years, the advent of novel nuclear medicine diagnostic procedures has led to a substantial increase in NET detection. Great varieties of exclusive single photon emission computed tomography (SPECT) and positron emission tomography (PET) radiopharmaceuticals for detecting NETs are being applied successfully in clinical settings, including [111In]In-pentetreotide, [99mTc]Tc-HYNIC-TOC/TATE, [68Ga]Ga-DOTA-TATE, and [64Cu]Cu-DOTA-TOC/TATE. Among these tracers for functional imaging, PET radiopharmaceuticals are clearly and substantially superior to planar or SPECT imaging radiopharmaceuticals. The main advantages include higher resolution, better sensitivity and increased lesion-to-background uptake. An advantage of diagnosis with a radiopharmaceutical is the capacity of theranostics to provide concomitant diagnosis and treatment with particulate radionuclides, such as beta and alpha emitters including Lutetium-177 (177Lu) and Actinium-225 (225Ac). Due to these unique challenges involved with diagnosing NETs, various PET tracers have been developed. This review compares the clinical characteristics of radiolabelled somatostatin analogues for NET diagnosis, focusing on the most recently FDA-approved [64Cu]Cu-DOTA-TATE as a state-of-the art NET-PET/CT radiopharmaceutical.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献