Generation and Evaluation of Synthetic Computed Tomography (CT) from Cone-Beam CT (CBCT) by Incorporating Feature-Driven Loss into Intensity-Based Loss Functions in Deep Convolutional Neural Network

Author:

Yoo Sang KyunORCID,Kim HojinORCID,Choi Byoung Su,Park Inkyung,Kim Jin Sung

Abstract

Deep convolutional neural network (CNN) helped enhance image quality of cone-beam computed tomography (CBCT) by generating synthetic CT. Most of the previous works, however, trained network by intensity-based loss functions, possibly undermining to promote image feature similarity. The verifications were not sufficient to demonstrate clinical applicability, either. This work investigated the effect of variable loss functions combining feature- and intensity-driven losses in synthetic CT generation, followed by strengthening the verification of generated images in both image similarity and dosimetry accuracy. The proposed strategy highlighted the feature-driven quantification in (1) training the network by perceptual loss, besides L1 and structural similarity (SSIM) losses regarding anatomical similarity, and (2) evaluating image similarity by feature mapping ratio (FMR), besides conventional metrics. In addition, the synthetic CT images were assessed in terms of dose calculating accuracy by a commercial Monte-Carlo algorithm. The network was trained with 50 paired CBCT-CT scans acquired at the same CT simulator and treatment unit to constrain environmental factors any other than loss functions. For 10 independent cases, incorporating perceptual loss into L1 and SSIM losses outperformed the other combinations, which enhanced FMR of image similarity by 10%, and the dose calculating accuracy by 1–2% of gamma passing rate in 1%/1mm criterion.

Funder

Faculty Research Grant of Yonsei University of College of Medicine

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3