Targeting the Redox Balance Pathway Using Ascorbic Acid in sdhb Zebrafish Mutant Larvae

Author:

Dona Margo,Lamers Maaike,Rohde Svenja,Gorissen Marnix,Timmers Henri J. L. M.

Abstract

Patients with mutations in the β-subunit of the succinate dehydrogenase (SDHB) have the highest risk to develop incurable malignant phaeochromocytomas and paragangliomas (PPGLs). Therapy development is hindered by limited possibilities to test new therapeutic strategies in vivo. One possible molecular mechanism of SDHB-associated tumorigenesis originates in an overproduction of reactive oxygen species (ROS) due to mitochondrial dysfunction. Ascorbic acid (Vitamin C) has already been shown to act as anti-cancer agent in several clinical trials for various types of cancer. In this study, the potential of the sdhbrmc200 zebrafish model to study SDHB-associated PPGLs using a drug screening approach was investigated. First, we identified increased basal ROS levels in homozygous sdhb larvae compared to heterozygous and wild-type siblings. Using a semi high-throughput drug screening, the effectiveness of different dosages of anti- and pro-oxidant Vitamin C were assessed to evaluate differences in survival, ROS levels, and locomotor activity. Low-dosage levels of Vitamin C induced a decrease of ROS levels but no significant effects on lifespan. In contrast, high-dosage levels of Vitamin C shortened the lifespan of the homozygous sdhbrmc200 larvae while not affecting the lifespan of heterozygous and wild-type siblings. These results validated the sdhbrmc200 zebrafish model as a powerful drug screening tool that may be used to identify novel therapeutic targets for SDHB-associated PPGLs.

Funder

Paradifference Foundation

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3