Deregulated Gene Expression Profiles and Regulatory Networks in Adult and Pediatric RUNX1/RUNX1T1-Positive AML Patients

Author:

Kanellou Peggy1,Georgakopoulos-Soares Ilias2ORCID,Zaravinos Apostolos34ORCID

Affiliation:

1. Department of Hematology, Venizeleio General Hospital of Heraklion, 71409 Heraklion, Greece

2. Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA

3. Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus

4. Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus

Abstract

Acute myeloid leukemia (AML) is a heterogeneous and complex disease concerning molecular aberrations and prognosis. RUNX1/RUNX1T1 is a fusion oncogene that results from the chromosomal translocation t(8;21) and plays a crucial role in AML. However, its impact on the transcriptomic profile of different age groups of AML patients is not completely understood. Here, we investigated the deregulated gene expression (DEG) profiles in adult and pediatric RUNX1/RUNX1T1-positive AML patients, and compared their functions and regulatory networks. We retrospectively analyzed gene expression data from two independent Gene Expression Omnibus (GEO) datasets (GSE37642 and GSE75461) and computed their differentially expressed genes and upstream regulators, using limma, GEO2Enrichr, and X2K. For validation purposes, we used the TCGA-LAML (adult) and TARGET-AML (pediatric) patient cohorts. We also analyzed the protein–protein interaction (PPI) networks, as well as those composed of transcription factors (TF), intermediate proteins, and kinases foreseen to regulate the top deregulated genes in each group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were further performed for the DEGs in each dataset. We found that the top upregulated genes in (both adult and pediatric) RUNX1/RUNX1T1-positive AML patients are enriched in extracellular matrix organization, the cell projection membrane, filopodium membrane, and supramolecular fiber. Our data corroborate that RUNX1/RUNX1T1 reprograms a large transcriptional network to establish and maintain leukemia via intricate PPI interactions and kinase-driven phosphorylation events.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3