A Novel Comprehensive Clinical Stratification Model to Refine Prognosis of Glioblastoma Patients Undergoing Surgical Resection

Author:

Ius TamaraORCID,Pignotti Fabrizio,Della Pepa Giuseppe MariaORCID,La Rocca GiuseppeORCID,Somma Teresa,Isola Miriam,Battistella Claudio,Gaudino SimonaORCID,Polano Maurizio,Dal Bo Michele,Bagatto Daniele,Pegolo Enrico,Chiesa Silvia,Arcicasa Mauro,Olivi Alessandro,Skrap Miran,Sabatino GiovanniORCID

Abstract

Despite recent discoveries in genetics and molecular fields, glioblastoma (GBM) prognosis still remains unfavorable with less than 10% of patients alive 5 years after diagnosis. Numerous studies have focused on the research of biological biomarkers to stratify GBM patients. We addressed this issue in our study by using clinical/molecular and image data, which is generally available to Neurosurgical Departments in order to create a prognostic score that can be useful to stratify GBM patients undergoing surgical resection. By using the random forest approach [CART analysis (classification and regression tree)] on Survival time data of 465 cases, we developed a new prediction score resulting in 10 groups based on extent of resection (EOR), age, tumor volumetric features, intraoperative protocols and tumor molecular classes. The resulting tree was trimmed according to similarities in the relative hazard ratios amongst groups, giving rise to a 5-group classification tree. These 5 groups were different in terms of overall survival (OS) (p < 0.000). The score performance in predicting death was defined by a Harrell’s c-index of 0.79 (95% confidence interval [0.76–0.81]). The proposed score could be useful in a clinical setting to refine the prognosis of GBM patients after surgery and prior to postoperative treatment.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference57 articles.

1. Prognostic factors effective on survival of patients with glioblastoma: Anadolu Medical Center experience;Guden;Indian J. Cancer,2016

2. Treatment of Glioblastoma

3. Epidemiology of Brain Tumors;Ohgaki;Methods Mol. Biol.,2009

4. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma

5. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3