Discovering Digital Tumor Signatures—Using Latent Code Representations to Manipulate and Classify Liver Lesions

Author:

Kleesiek JensORCID,Kersjes Benedikt,Ueltzhöffer Kai,Murray Jacob M.ORCID,Rother Carsten,Köthe UllrichORCID,Schlemmer Heinz-Peter

Abstract

Modern generative deep learning (DL) architectures allow for unsupervised learning of latent representations that can be exploited in several downstream tasks. Within the field of oncological medical imaging, we term these latent representations “digital tumor signatures” and hypothesize that they can be used, in analogy to radiomics features, to differentiate between lesions and normal liver tissue. Moreover, we conjecture that they can be used for the generation of synthetic data, specifically for the artificial insertion and removal of liver tumor lesions at user-defined spatial locations in CT images. Our approach utilizes an implicit autoencoder, an unsupervised model architecture that combines an autoencoder and two generative adversarial network (GAN)-like components. The model was trained on liver patches from 25 or 57 inhouse abdominal CT scans, depending on the experiment, demonstrating that only minimal data is required for synthetic image generation. The model was evaluated on a publicly available data set of 131 scans. We show that a PCA embedding of the latent representation captures the structure of the data, providing the foundation for the targeted insertion and removal of tumor lesions. To assess the quality of the synthetic images, we conducted two experiments with five radiologists. For experiment 1, only one rater and the ensemble-rater were marginally above the chance level in distinguishing real from synthetic data. For the second experiment, no rater was above the chance level. To illustrate that the “digital signatures” can also be used to differentiate lesion from normal tissue, we employed several machine learning methods. The best performing method, a LinearSVM, obtained 95% (97%) accuracy, 94% (95%) sensitivity, and 97% (99%) specificity, depending on if all data or only normal appearing patches were used for training of the implicit autoencoder. Overall, we demonstrate that the proposed unsupervised learning paradigm can be utilized for the removal and insertion of liver lesions at user defined spatial locations and that the digital signatures can be used to discriminate between lesions and normal liver tissue in abdominal CT scans.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference36 articles.

1. Generative Adversarial Networks;Goodfellow;arXiv,2014

2. Image-to-Image Translation with Conditional Adversarial Networks;Isola;arXiv,2018

3. Deep MR to CT Synthesis Using Unpaired Data;Wolterink;arXiv,2017

4. Deep Learning MR Imaging–based Attenuation Correction for PET/MR Imaging

5. Unsupervised Medical Image Translation Using Cycle-MedGAN

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3