RenseNet: A Deep Learning Network Incorporating Residual and Dense Blocks with Edge Conservative Module to Improve Small-Lesion Classification and Model Interpretation

Author:

Seo Hyunseok1ORCID,Lee Seokjun1,Yun Sojin1,Leem Saebom1ORCID,So Seohee1,Han Deok Hyun2

Affiliation:

1. Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

2. Department of Urology, Samsung Medical Center (SMC), Seoul 06351, Republic of Korea

Abstract

Deep learning has become an essential tool in medical image analysis owing to its remarkable performance. Target classification and model interpretability are key applications of deep learning in medical image analysis, and hence many deep learning-based algorithms have emerged. Many existing deep learning-based algorithms include pooling operations, which are a type of subsampling used to enlarge the receptive field. However, pooling operations degrade the image details in terms of signal processing theory, which is significantly sensitive to small objects in an image. Therefore, in this study, we designed a Rense block and edge conservative module to effectively manipulate previous feature information in the feed-forward learning process. Specifically, a Rense block, an optimal design that incorporates skip connections of residual and dense blocks, was demonstrated through mathematical analysis. Furthermore, we avoid blurring of the features in the pooling operation through a compensation path in the edge conservative module. Two independent CT datasets of kidney stones and lung tumors, in which small lesions are often included in the images, were used to verify the proposed RenseNet. The results of the classification and explanation heatmaps show that the proposed RenseNet provides the best inference and interpretation compared to current state-of-the-art methods. The proposed RenseNet can significantly contribute to efficient diagnosis and treatment because it is effective for small lesions that might be misclassified or misinterpreted.

Funder

Korea Institute of Science and Technology

SMT-KIST Collaborative Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3