Tumor–Stroma Ratio in Colorectal Cancer—Comparison between Human Estimation and Automated Assessment

Author:

Firmbach Daniel123,Benz Michaela1ORCID,Kuritcyn Petr1ORCID,Bruns Volker1ORCID,Lang-Schwarz Corinna4ORCID,Stuebs Frederik A.35ORCID,Merkel Susanne36ORCID,Leikauf Leah-Sophie23,Braunschweig Anna-Lea23,Oldenburger Angelika23,Gloßner Laura23,Abele Niklas23,Eck Christine23,Matek Christian23ORCID,Hartmann Arndt23,Geppert Carol I.23

Affiliation:

1. Digital Health Systems Department, Fraunhofer-Institute for Integrated Circuits IIS, Am Wolfsmantel 33, 91058 Erlangen, Germany

2. Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nuremberg, Krankenhausstr. 8–10, 91054 Erlangen, Germany

3. Comprehensive Cancer Center Erlangen-EMN (CCC), University Hospital Erlangen, FAU Erlangen-Nuremberg, Östliche Stadtmauerstr. 30, 91054 Erlangen, Germany

4. Institute of Pathology, Hospital Bayreuth, Preuschwitzer Str. 101, 95445 Bayreuth, Germany

5. Department of Obstetrics and Gynaecology, University Hospital Erlangen, FAU Erlangen-Nuremberg, Universitätsstraße 21–23, 91054 Erlangen, Germany

6. Department of Surgery, University Hospital Erlangen, FAU Erlangen-Nuremberg, Krankenhausstr. 12, 91054 Erlangen, Germany

Abstract

The tumor–stroma ratio (TSR) has been repeatedly shown to be a prognostic factor for survival prediction of different cancer types. However, an objective and reliable determination of the tumor–stroma ratio remains challenging. We present an easily adaptable deep learning model for accurately segmenting tumor regions in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of colon cancer patients into five distinct classes (tumor, stroma, necrosis, mucus, and background). The tumor–stroma ratio can be determined in the presence of necrotic or mucinous areas. We employ a few-shot model, eventually aiming for the easy adaptability of our approach to related segmentation tasks or other primaries, and compare the results to a well-established state-of-the art approach (U-Net). Both models achieve similar results with an overall accuracy of 86.5% and 86.7%, respectively, indicating that the adaptability does not lead to a significant decrease in accuracy. Moreover, we comprehensively compare with TSR estimates of human observers and examine in detail discrepancies and inter-rater reliability. Adding a second survey for segmentation quality on top of a first survey for TSR estimation, we found that TSR estimations of human observers are not as reliable a ground truth as previously thought.

Funder

Bavarian Ministry of Economic Affairs, Regional Development and Energy

Federal Ministry of Education and Research

Interdisciplinary Center for Clinical Research

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3