Transfer Learning Approach to Vascular Permeability Changes in Brain Metastasis Post-Whole-Brain Radiotherapy

Author:

Arledge Chad A.1ORCID,Crowe William N.2,Wang Lulu1,Bourland John Daniel3,Topaloglu Umit45,Habib Amyn A.6,Zhao Dawen14

Affiliation:

1. Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA

2. Department of Engineering, Wake Forest University, Winston-Salem, NC 27101, USA

3. Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA

4. Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA

5. Clinical and Translation Research Informatics Branch, National Cancer Institute, Rockville, MD 20850, USA

6. Department of Neurology, University of Texas Southwestern Medical Center and VA North Texas Medical Center, Dallas, TX 75390, USA

Abstract

The purpose of this study is to further validate the utility of our previously developed CNN in an alternative small animal model of BM through transfer learning. Unlike the glioma model, the BM mouse model develops multifocal intracranial metastases, including both contrast enhancing and non-enhancing lesions on DCE MRI, thus serving as an excellent brain tumor model to study tumor vascular permeability. Here, we conducted transfer learning by transferring the previously trained GBM CNN to DCE MRI datasets of BM mice. The CNN was re-trained to learn about the relationship between BM DCE images and target permeability maps extracted from the Extended Tofts Model (ETM). The transferred network was found to accurately predict BM permeability and presented with excellent spatial correlation with the target ETM PK maps. The CNN model was further tested in another cohort of BM mice treated with WBRT to assess vascular permeability changes induced via radiotherapy. The CNN detected significantly increased permeability parameter Ktrans in WBRT-treated tumors (p < 0.01), which was in good agreement with the target ETM PK maps. In conclusion, the proposed CNN can serve as an efficient and accurate tool for characterizing vascular permeability and treatment responses in small animal brain tumor models.

Funder

NIH/NCI

Wake Forest Comprehensive Cancer Center

Department of Veteran’s Affairs

National Institutes of Health

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3