Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients

Author:

Diaz-Ramón Jose Luis12,Gardeazabal Jesus12,Izu Rosa Maria23ORCID,Garrote Estibaliz45,Rasero Javier6ORCID,Apraiz Aintzane25,Penas Cristina25ORCID,Seijo Sandra7,Lopez-Saratxaga Cristina4ORCID,De la Peña Pedro Maria7,Sanchez-Diaz Ana23,Cancho-Galan Goikoane28,Velasco Veronica19,Sevilla Arrate210ORCID,Fernandez David11,Cuenca Iciar7,Cortes Jesus María2512ORCID,Alonso Santos10ORCID,Asumendi Aintzane25ORCID,Boyano María Dolores25ORCID

Affiliation:

1. Dermatology Service, Cruces University Hospital, 48903 Barakaldo, Spain

2. Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain

3. Dermatology Service, Basurto University Hospital, 48013 Bilbao, Spain

4. TECNALIA, Basque Research and Technology Alliance (BRTA), 20850 Gipuzkoa, Spain

5. Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain

6. Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA

7. Ibermática Innovation Institute, 48170 Zamudio, Spain

8. Pathology Service, Basurto University Hospital, 48013 Bilbao, Spain

9. Pathology Service, Cruces University Hospital, 48903 Barakaldo, Spain

10. Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country/EHU, 48940 Leioa, Spain

11. NorayBio, 48160 Zamudio, Spain

12. IKERBASQUE, The Basque Foundation for Science, 48009 Bilbao, Spain

Abstract

This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGFβ (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including “all patients” or only patients “at early stages of melanoma”), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas.

Funder

Basque Government

UPV/EHU

H2020-ESCEL JTI

MINECO

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3