Impact of Tumour Segmentation Accuracy on Efficacy of Quantitative MRI Biomarkers of Radiotherapy Outcome in Brain Metastasis

Author:

Jalalifar Seyed AliORCID,Soliman Hany,Sahgal Arjun,Sadeghi-Naini AliORCID

Abstract

Significantly affecting patients’ clinical course and quality of life, a growing number of cancer cases are diagnosed with brain metastasis (BM) annually. Stereotactic radiotherapy is now a major treatment option for patients with BM. However, it may take months before the local response of BM to stereotactic radiation treatment is apparent on standard follow-up imaging. While machine learning in conjunction with radiomics has shown great promise in predicting the local response of BM before or early after radiotherapy, further development and widespread application of such techniques has been hindered by their dependency on manual tumour delineation. In this study, we explored the impact of using less-accurate automatically generated segmentation masks on the efficacy of radiomic features for radiotherapy outcome prediction in BM. The findings of this study demonstrate that while the effect of tumour delineation accuracy is substantial for segmentation models with lower dice scores (dice score ≤ 0.85), radiomic features and prediction models are rather resilient to imperfections in the produced tumour masks. Specifically, the selected radiomic features (six shared features out of seven) and performance of the prediction model (accuracy of 80% versus 80%, AUC of 0.81 versus 0.78) were fairly similar for the ground-truth and automatically generated segmentation masks, with dice scores close to 0.90. The positive outcome of this work paves the way for adopting high-throughput automatically generated tumour masks for discovering diagnostic and prognostic imaging biomarkers in BM without sacrificing accuracy.

Funder

Natural Sciences and Engineering Research Council

Terry Fox Foundation

Lotte and John Hecht Memorial Foundation

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3