Abstract
Oral squamous cell carcinoma (OSCC) is among the most commonly diagnosed malignancies in the world. Patients with OSCC often develop treatment resistance, resulting in a poor prognosis. Mounting evidence indicates that interactions between cancerous cells and other components of the tumor microenvironment (TME) determine their response to treatment. Herein, we examined the role of cancer stem cell-derived extracellular vesicles (CSC_EVs) generated from CAL27 and SCC-15 OSCC cells in the development of cisplatin (CDDP) resistance. We demonstrated that CSC_EVs enhance CDDP resistance, clonogenicity, and the tumorsphere formation potential of OSCC cells. Our bioinformatics analyses revealed that OSCC_EVs are enriched with microRNA (miR)-21-5p and are associated with increased metastasis, stemness, chemoresistance, and poor survival in patients with OSCC. Mechanistically, enhanced activity of CSC_EVs was positively correlated with upregulated β-catenin, phosphatidylinositol-3 kinase (PI3K), signal transducer and activator of transcription 3 (STAT3), mammalian target of rapamycin (mTOR), and transforming growth factor (TGF)-β1 messenger (m)RNA and protein expression levels. CSC_EVs also conferred a cancer-associated fibroblast (CAF) phenotype on normal gingival fibroblasts (NGFs), with the resultant CAFs enhancing the oncogenicity of OSCC cells. Interestingly, treatment with ovatodiolide (OV), the bioactive component of Anisomeles indica, suppressed OSCC tumorigenesis by reducing the cargo content of EVs derived from CSCs, suppressing self-renewal, and inhibiting the NGF-CAF transformation by disrupting EV-TME interactions. Moreover, by suppressing miR-21-5p, STAT3, and mTOR expressions in CSC_EVs, OV re-sensitized CSCs to CDDP and suppressed OSCC tumorigenesis. In vivo, treatment with OV alone or in combination with CDDP significantly reduced the tumor sphere-forming ability and decreased EV cargos containing mTOR, PI3K, STAT3, β-catenin, and miR-21-5p. In summary, our findings provide further strong evidence of OV’s therapeutic effect in OSCC.
Funder
Ministry of Science and Technology, Taiwan
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献