Oncogenic Orphan Nuclear Receptor NR4A3 Interacts and Cooperates with MYB in Acinic Cell Carcinoma

Author:

Lee David Y.,Brayer Kathryn J.,Mitani YoshitsuguORCID,Burns Eric A.ORCID,Rao Pulivarthi H.,Bell Diana,Williams Michelle D.,Ferrarotto Renata,Pytynia Kristen B.,El-Naggar Adel K.,Ness Scott A.ORCID

Abstract

Acinic cell carcinoma (AcCC) is a morphologically distinctive salivary gland malignancy often associated with chromosome rearrangements leading to overexpression of the NR4A3 transcription factor. However, little is known about how NR4A3 contributes to AcCC biology. Detailed RNA-sequencing of 21 archived AcCC samples revealed fusion reads arising from recurrent t(4;9), t(9;12), t(8;9) or t(2;4) chromosomal translocations, which positioned highly active enhancers adjacent to the promoter of the NR4A3 gene or the closely related NR4A2 gene, resulting in their aberrant overexpression. Transcriptome analyses revealed several distinct subgroups of AcCC tumors, including a subgroup that overexpressed both NR4A3 and MSANTD3. A poor survival subset of the tumors with high-grade transformation expressed NR4A3 and POMC as well as MYB, an oncogene that is the major driver in a different type of salivary gland tumor, adenoid cystic carcinoma. The combination of NR4A3 and MYB showed cooperativity in regulating a distinct set of genes. In addition, the ligand binding domain of NR4A3 directly bound the Myb DNA binding domain. Transformation assays indicated that, while overexpressed NR4A3 was sufficient to generate transformed colonies, the combination of NR4A3 plus Myb was more potent, leading to anchorage-independent growth and increased cellular invasiveness. The results confirm that NR4A3 and NR4A2 are the main driver genes of AcCC and suggest that concurrent overexpression of NR4A3 and MYB defines a subset of AcCC patients with high-grade transformation that display exceptionally poor outcome.

Funder

National Institutes of Health

U.S. Department of Health and Human Services

Adenoid Cystic Carcinoma Research Foundation

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3