Machine Learning to Discern Interactive Clusters of Risk Factors for Late Recurrence of Metastatic Breast Cancer

Author:

Gomez Marti Juan Luis,Brufsky AdamORCID,Wells AlanORCID,Jiang Xia

Abstract

Background: Risk of metastatic recurrence of breast cancer after initial diagnosis and treatment depends on the presence of a number of risk factors. Although most univariate risk factors have been identified using classical methods, machine-learning methods are also being used to tease out non-obvious contributors to a patient’s individual risk of developing late distant metastasis. Bayesian-network algorithms can identify not only risk factors but also interactions among these risks, which consequently may increase the risk of developing metastatic breast cancer. We proposed to apply a previously developed machine-learning method to discern risk factors of 5-, 10- and 15-year metastases. Methods: We applied a previously validated algorithm named the Markov Blanket and Interactive Risk Factor Learner (MBIL) to the electronic health record (EHR)-based Lynn Sage Database (LSDB) from the Lynn Sage Comprehensive Breast Center at Northwestern Memorial Hospital. This algorithm provided an output of both single and interactive risk factors of 5-, 10-, and 15-year metastases from the LSDB. We individually examined and interpreted the clinical relevance of these interactions based on years to metastasis and reliance on interactivity between risk factors. Results: We found that, with lower alpha values (low interactivity score), the prevalence of variables with an independent influence on long-term metastasis was higher (i.e., HER2, TNEG). As the value of alpha increased to 480, stronger interactions were needed to define clusters of factors that increased the risk of metastasis (i.e., ER, smoking, race, alcohol usage). Conclusion: MBIL identified single and interacting risk factors of metastatic breast cancer, many of which were supported by clinical evidence. These results strongly recommend the development of further large data studies with different databases to validate the degree to which some of these variables impact metastatic breast cancer in the long term.

Funder

United States Department of Defense

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3