DNA Karyometry for Automated Detection of Cancer Cells

Author:

Böcking Alfred,Friedrich David,Schramm Martin,Palcic Branko,Erbeznik Gregor

Abstract

Background: Microscopical screening of cytological samples for the presence of cancer cells at high throughput with sufficient diagnostic accuracy requires highly specialized personnel which is not available in most countries. Methods: Using commercially available automated microscope-based screeners (MotiCyte and EasyScan), software was developed which is able to classify Feulgen-stained nuclei into eight diagnostically relevant types, using supervised machine learning. the nuclei belonging to normal cells were used for internal calibration of the nuclear DNA content while nuclei belonging to those suspicious of being malignant were specifically identified. The percentage of morphologically abnormal nuclei was used to identify samples suspected of malignancy, and the proof of DNA-aneuploidy was used to definitely determine the state malignancy. A blinded study was performed using oral smears from 92 patients with Fanconi anemia, revealing oral leukoplakias or erythroplakias. In an earlier study, we compared diagnostic accuracies on 121 serous effusion specimens. In addition, using a blinded study employing 80 patients with prostate cancer who were under active surveillance, we aimed to identify those whose cancers would not advance within 4 years. Results: Applying a threshold of the presence of >4% of morphologically abnormal nuclei from oral squamous cells and DNA single-cell or stemline aneuploidy to identify samples suspected of malignancy, an overall diagnostic accuracy of 91.3% was found as compared with 75.0% accuracy determined by conventional subjective cytological assessment using the same slides. Accuracy of automated screening effusions was 84.3% as compared to 95.9% of conventional cytology. No prostate cancer patients under active surveillance, revealing DNA-grade 1, showed progress of their disease within 4.1 years. Conclusions: An automated microscope-based screener was developed which is able to identify malignant cells in different types of human specimens with a diagnostic accuracy comparable with subjective cytological assessment. Early prostate cancers which do not progress despite applying any therapy could be identified using this automated approach.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3