CTTN Overexpression Confers Cancer Stem Cell-like Properties and Trastuzumab Resistance via DKK-1/WNT Signaling in HER2 Positive Breast Cancer

Author:

Moon So-Jeong12ORCID,Choi Hyung-Jun2,Kye Young-Hyeon12,Jeong Ga-Young2,Kim Hyung-Yong2ORCID,Myung Jae-Kyung2ORCID,Kong Gu12

Affiliation:

1. Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Republic of Korea

2. Department of Pathology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea

Abstract

Background: Despite the therapeutic success of trastuzumab, HER2 positive (HER2+) breast cancer patients continue to face significant difficulties due to innate or acquired drug resistance. In this study we explored the potential role of CTTN in inducing trastuzumab resistance of HER2+ breast cancers. Methods: Genetic changes of CTTN and survival of HER2+ breast cancer patients were analyzed in multiple breast cancer patient cohorts (METABRIC, TCGA, Kaplan-Meier (KM) plotter, and Hanyang University cohort). The effect of CTTN on cancer stem cell activity was assessed using the tumorsphere formation, ALDEFLUOR assay, and by in vivo xenograft experiments. CTTN-induced trastuzumab resistance was assessed by the sulforhodamine B (SRB) assay, colony formation assays, and in vivo xenograft model. RNA-seq analysis was used to clarify the mechanism of trastuzumab resistance conferred by CTTN. Results: Survival analysis indicated that CTTN overexpression is related to a poor prognosis in HER2+ breast cancers (OS, p = 0.05 in the Hanyang University cohort; OS, p = 0.0014 in KM plotter; OS, p = 0.008 and DFS, p = 0.010 in METABRIC). CTTN overexpression-induced cancer stem cell-like characteristics in experiments of tumorsphere formation, ALDEFLUOR assays, and in vivo limiting dilution assays. CTTN overexpression resulted in trastuzumab resistance in SRB, colony formation assays, and in vivo xenograft models. Mechanistically, the mRNA and protein levels of DKK-1, a Wnt antagonist, were downregulated by CTTN. Treatment of the β-catenin/TCF inhibitor reversed CTTN-induced cancer stem cell-like properties in vitro. Combination treatment with trastuzumab and β-catenin/TCF inhibitor overcame trastuzumab resistance conferred by CTTN overexpression in in vitro colony formation assays. Conclusions: CTTN activates DKK-1/Wnt/β-catenin signaling to induce trastuzumab resistance. We propose that CTTN is a novel biomarker indicating a poor prognosis and a possible therapeutic target for overcoming trastuzumab resistance.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference43 articles.

1. Breast Cancer: Current Molecular Therapeutic Targets and New Players;Nagini;Anticancer Agents Med. Chem.,2017

2. Breast Cancer Treatment: A Review;Waks;JAMA,2019

3. Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy;Derakhshani;J. Cell. Physiol.,2020

4. The trastuzumab era: Current and upcoming targeted HER2+ breast cancer therapies;Kreutzfeldt;Am. J. Cancer Res.,2020

5. The involvement of the chromosome 11q13 region in human malignancies: Cyclin D1 and EMS1 are two new candidate oncogenes—A review;Schuuring;Gene,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3