Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease with diverse, often poor prognoses and treatment responses. In order to identify targetable biomarkers and guide personalized care, scientists have developed multiple molecular classification systems for TNBC based on transcriptomic profiling. However, there is no consensus on the molecular subtypes of TNBC, likely due to discrepancies in technical and computational methods used by different research groups. Here, we reassessed the major steps for TNBC subtyping, validated the reproducibility of established TNBC subtypes, and identified two more subtypes with a larger sample size. By comparing results from different workflows, we demonstrated the limitations of formalin-fixed, paraffin-embedded samples, as well as batch effect removal across microarray platforms. We also refined the usage of computational tools for TNBC subtyping. Furthermore, we integrated high-quality multi-institutional TNBC datasets (discovery set: n = 457; validation set: n = 165). Performing unsupervised clustering on the discovery and validation sets independently, we validated four previously discovered subtypes: luminal androgen receptor, mesenchymal, immunomodulatory, and basal-like immunosuppressed. Additionally, we identified two potential intermediate states of TNBC tumors based on their resemblance with more than one well-characterized subtype. In summary, we addressed the issues and limitations of previous TNBC subtyping through comprehensive analyses. Our results promote the rational design of future subtyping studies and provide new insights into TNBC patient stratification.
Funder
National Key Research and Development Program of China
National Natural Sciences Foundation of China
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献