Can Radiomics Provide Additional Information in [18F]FET-Negative Gliomas?

Author:

von Rohr Katharina,Unterrainer MarcusORCID,Holzgreve AdrienORCID,Kirchner Maximilian A.,Li Zhicong,Unterrainer Lena M.,Suchorska Bogdana,Brendel Matthias,Tonn Joerg-Christian,Bartenstein Peter,Ziegler Sibylle,Albert Nathalie L.,Kaiser LenaORCID

Abstract

The purpose of this study was to evaluate the possibility of extracting relevant information from radiomic features even in apparently [18F]FET-negative gliomas. A total of 46 patients with a newly diagnosed, histologically verified glioma that was visually classified as [18F]FET-negative were included. Tumor volumes were defined using routine T2/FLAIR MRI data and applied to extract information from dynamic [18F]FET PET data, i.e., early and late tumor-to-background (TBR5–15, TBR20–40) and time-to-peak (TTP) images. Radiomic features of healthy background were calculated from the tumor volume of interest mirrored in the contralateral hemisphere. The ability to distinguish tumors from healthy tissue was assessed using the Wilcoxon test and logistic regression. A total of 5, 15, and 69% of features derived from TBR20–40, TBR5–15, and TTP images, respectively, were significantly different. A high number of significantly different TTP features was even found in isometabolic gliomas (after exclusion of photopenic gliomas) with visually normal [18F]FET uptake in static images. However, the differences did not reach satisfactory predictability for machine-learning-based identification of tumor tissue. In conclusion, radiomic features derived from dynamic [18F]FET PET data may extract additional information even in [18F]FET-negative gliomas, which should be investigated in larger cohorts and correlated with histological and outcome features in future studies.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3