Author:
Klomp Maria J.,Dalm Simone U.,van Koetsveld Peter M.,Dogan Fadime,de Jong Marion,Hofland Leo J.
Abstract
The aim of this study was to increase somatostatin type-2 receptor (SSTR2) expression on neuroendocrine tumor (NET) cells using histone deacetylase inhibitors (HDACis), potentially increasing the uptake of SSTR2-targeted radiopharmaceuticals and subsequently improving treatment efficacy of peptide receptor radionuclide therapy (PRRT). Human NET cell lines BON-1, NCI-H727, and GOT1 were treated with HDACis (i.e., CI-994, entinostat, LMK-235, mocetinostat, panobinostat, or valproic acid (VPA); entinostat and VPA were the HDACis tested in GOT1 cells) to examine SSTR2 mRNA expression levels and uptake of SSTR2-targeting radiotracer [111In]In-DOTATATE. Reversibility of the induced effects was examined after drug-withdrawal. Finally, the effect of VPA on radiosensitivity was investigated. A strong stimulatory effect in BON-1, NCI-H727, and GOT1 cells was observed after HDACi treatment, both on SSTR2 mRNA expression levels and [111In]In-DOTATATE uptake. The effects of the HDACis were largely reversible over a period of seven days, demonstrating largest reductions within the first day. The reversibility profile of the induced effects suggests that proper timing of HDACi treatment is most likely essential for a beneficial outcome. In addition to increasing SSTR2 expression levels, VPA enhanced the radiosensitivity of all cell lines. In conclusion, HDACi treatment increased SSTR2 expression, and radiosensitivity was also enhanced upon VPA treatment.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献