Phosphodiesterase 5 (PDE5) Is Highly Expressed in Cancer-Associated Fibroblasts and Enhances Breast Tumor Progression

Author:

Catalano ,Panza ,Augimeri ,Giordano ,Malivindi ,Gelsomino ,Marsico ,Giordano ,Győrffy ,Bonofiglio ,Andò ,Barone

Abstract

The overexpression of phosphodiesterase (PDE) 5 is frequently found in various human cancers, such as those of the breast. However, PDE5’s role in the tumor microenvironment is still unknown. As PDE5 represents a high-value therapeutic target, we investigated whether the expression and function of PDE5 in breast cancer-associated fibroblasts (CAFs) may be clinically relevant to malignant progression. PDE5 expression was increased in human breast cancer stroma compared with normal stroma and was correlated to a shorter overall survival. Treatment of CAFs, isolated from breast tumor biopsies, with selective PDE5 inhibitors inhibited their proliferation, motility, and invasiveness, and negatively controlled tumor–stroma interactions in both ‘in vitro’ and ‘in vivo’ models. PDE5 stable overexpression transformed immortalized mouse embryonic fibroblasts (MEFs) towards an activated fibroblast phenotype, impacting their intrinsic characteristics and paracrine effects on breast cancer cell growth and migration through an enhanced production of the C-X-C motif chemokine 16 (CXCL16). On the other hand, CAF exposure to PDE5 inhibitors was associated with reduced CXCL16 expression and secretion. Importantly, CXCL16 levels in breast cancer stroma showed a strong correlation with PDE5 levels and poor patient outcomes. In conclusion, PDE5 is overexpressed in breast cancer stroma, enhances the tumor-stimulatory activities of fibroblasts, and impacts clinical outcomes; thus, we propose this enzyme as an attractive candidate for prognosis and a potential target for treatments in breast cancer patients.

Funder

Associazione Italiana per la Ricerca sul Cancro

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3