Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stromal Cells as an Efficient Nanocarrier to Deliver siRNA or Drug to Pancreatic Cancer Cells

Author:

Draguet Florian1,Dubois Nathan1,Bouland Cyril1ORCID,Pieters Karlien1,Bron Dominique2,Meuleman Nathalie123,Stamatopoulos Basile13,Lagneaux Laurence1

Affiliation:

1. Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium

2. Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium

3. Medicine Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Treatment of PDAC remains a major challenge. This study aims to evaluate, in vitro, the use of human umbilical cord mesenchymal stromal cell (UC-MSC)-derived EVs to specifically target pancreatic cancer cells. EVs were isolated from the FBS-free supernatants of the cultured UC-MSCs by ultracentrifugation and characterized by several methods. EVs were loaded with scramble or KRASG12D-targeting siRNA by electroporation. The effects of control and loaded EVs on different cell types were evaluated by assessing cell proliferation, viability, apoptosis and migration. Later, the ability of EVs to function as a drug delivery system for doxorubicin (DOXO), a chemotherapeutic drug, was also evaluated. Loaded EVs exhibited different kinetic rates of uptake by three cell lines, namely, BxPC-3 cells (pancreatic cancer cell line expressing KRASwt), LS180 cells (colorectal cell line expressing KRASG12D) and PANC-1 cells (pancreatic cell line expressing KRASG12D). A significant decrease in the relative expression of the KRASG12D gene after incubation with KRAS siRNA EVs was observed by real-time PCR. KRASG12D siRNA EVs significantly reduced the proliferation, viability and migration of the KRASG12D cell lines compared to scramble siRNA EVs. An endogenous EV production method was applied to obtain DOXO-loaded EVs. Briefly, UC-MSCs were treated with DOXO. After 24 h, UC-MSCs released DOXO-loaded EVs. DOXO-loaded EVs were rapidly taken up by PANC-1 cells and induced apoptotic cell death more efficiently than free DOXO. In conclusion, the use of UC-MSC-derived EVs as a drug delivery system for siRNAs or drugs could be a promising approach for the targeted treatment of PDAC.

Funder

Fonds National de la Recherche Scientifique (FNRS)/Télévie

Association Jules Bordet

Fonds Lambeau-Marteaux

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3