Identifying Candidate Gene Drivers Associated with Relapse in Pediatric T-Cell Acute Lymphoblastic Leukemia Using a Gene Co-Expression Network Approach

Author:

Kypraios Anthony12,Bennour Juba12,Imbert Véronique12ORCID,David Léa12,Calvo Julien3ORCID,Pflumio Françoise3,Bonnet Raphaël12,Couralet Marie45ORCID,Magnone Virginie45,Lebrigand Kevin45,Barbry Pascal126,Rohrlich Pierre S.126,Peyron Jean-François12ORCID

Affiliation:

1. Université Côte d’Azur, Inserm C3M, 06200 Nice, France

2. Team#4: “Fundamental to Translational Research on Dysregulated Hematopoiesis—DysHema”, Centre Méditerranéen de Médecine Moléculaire-C3M-Inserm U1065, Bâtiment Universitaire ARCHIMED, 151 Route Saint Antoine de Ginestière, BP 2 3194, CEDEX 3, 06204 Nice, France

3. Université de Paris, Inserm, CEA, 92260 Fontenay-aux-Roses, France

4. Université Côte d’Azur, CNRS, IPMC, 06560 Valbonne, France

5. UCA GenomiX, IPMC, 06560 Valbonne, France

6. CHU de Nice, Hôpital de l’Archet, 06000 Nice, France

Abstract

Pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) relapses are still associated with a dismal outcome, justifying the search for new therapeutic targets and relapse biomarkers. Using single-cell RNA sequencing (scRNAseq) data from three paired samples of pediatric T-ALL at diagnosis and relapse, we first conducted a high-dimensional weighted gene co-expression network analysis (hdWGCNA). This analysis highlighted several gene co-expression networks (GCNs) and identified relapse-associated hub genes, which are considered potential driver genes. Shared relapse-expressed genes were found to be related to antigen presentation (HLA, B2M), cytoskeleton remodeling (TUBB, TUBA1B), translation (ribosomal proteins, EIF1, EEF1B2), immune responses (MIF, EMP3), stress responses (UBC, HSP90AB1/AA1), metabolism (FTH1, NME1/2, ARCL4C), and transcriptional remodeling (NF-κB family genes, FOS-JUN, KLF2, or KLF6). We then utilized sparse partial least squares discriminant analysis to select from a pool of 481 unique leukemic hub genes, which are the genes most discriminant between diagnosis and relapse states (comprising 44, 35, and 31 genes, respectively, for each patient). Applying a Cox regression method to these patient-specific genes, along with transcriptomic and clinical data from the TARGET-ALL AALL0434 cohort, we generated three model gene signatures that efficiently identified relapsed patients within the cohort. Overall, our approach identified new potential relapse-associated genes and proposed three model gene signatures associated with lower survival rates for high-score patients.

Funder

Inserm

Sohn Monaco Foundation

Rotary Club Salernes Haut Var

ARC

INCa

National Infrastructure France Génomique

3IA Cote-d’Azur

PPIA 4D-OMICS

Conseil départemental 06

Cancéropole PACA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3