Early On-Treatment Prediction of the Mechanisms of Acquired Resistance to EGFR Tyrosine Kinase Inhibitors

Author:

Choi Yu-raORCID,Cho Youngnam,Park Seog-Yun,Kim Sunshin,Shin Myungsun,Choi Yongdoo,Shin Dong HoonORCID,Han Ji-Youn,Lee YoungjooORCID

Abstract

Background: Prediction of resistance mechanisms for epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) remains challenging. Thus, we investigated whether resistant cancer cells that expand shortly after EGFR-TKI treatment would eventually cause the resistant phenotype. Methods: We generated two EGFR-mutant lung cancer cell lines resistant to gefitinib (PC9GR and HCC827GR). The parent cell lines were exposed to short-term treatment with gefitinib or paclitaxel and then were assessed for EGFR T790M mutation and C-MET expression. These experiments were repeated in vivo and in clinically relevant patient-derived cell (PDC) models. For validation in clinical cases, we measured these gene alterations in plasma circulating tumor DNA (ctDNA) before and 8 weeks after starting EGFR-TKIs in four patients with EGFR-mutant lung cancer. Results: T790M mutation was only detected in the PC9GR cells, whereas C-MET amplification was detected in the HCC827GR cells. The T790M mutation level significantly increased in PC9 cells after short-term treatment with gefitinib but not in the paclitaxel. C-MET mRNA expression was only significantly increased in gefitinib-treated HCC827 cells. We confirmed that the C-MET copy number in HCC827 cells that survived after short-term gefitinib treatment was significantly higher than that in dead HCC827 cells. These findings were reproduced in the in vivo and PDC models. An early on-treatment increase in the plasma ctDNA level of these gene alterations was correlated with the corresponding resistance mechanism to EGFR-TKIs, a finding that was confirmed in post-treatment tumor tissues. Conclusions: Early on-treatment kinetics in resistance-related gene alterations may predict the final mechanism of EGFR-TKI resistance.

Funder

Ministry of Education

National Research Foundation of Korea

National Cancer Center

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3