Epithelial-to-Mesenchymal Transition and Neoangiogenesis in Laryngeal Squamous Cell Carcinoma

Author:

Franz LeonardoORCID,Nicolè LorenzoORCID,Frigo Anna ChiaraORCID,Ottaviano Giancarlo,Gaudioso Piergiorgio,Saccardo Tommaso,Visconti Francesca,Cappellesso Rocco,Blandamura Stella,Fassina Ambrogio,Marioni GinoORCID

Abstract

The mechanism of epithelial–mesenchymal transition (EMT) is fundamental for carcinogenesis, tumor progression, cancer cell invasion, metastasis, recurrence, and therapy resistance, comprising important events, such as cellular junction degradation, downregulation of epithelial phenotype markers, overexpression of mesenchymal markers, and increase in cellular motility. The same factors that drive epithelial cells toward a mesenchymal phenotype may also drive endothelial cells toward a proangiogenic phenotype. The aim of this exploratory study was to investigate a potential interplay between EMT and angiogenesis (quantified through CD105 expression) in laryngeal carcinoma (LSCC). CD105-assessed microvessel density (MVD) and EMT markers (E-cadherin, N-cadherin, Snail, Slug, Zeb1, and Zeb2) were assessed on 37 consecutive LSCC cases. The univariate Cox regression model identified pN+ status (p = 0.0343) and Slug expression (p = 0.0268) as predictive of disease-free survival (DFS). A trend toward significance emerged for CD105-assessed MVD (p = 0.0869) and N-cadherin expression (p = 0.0911). In the multivariate Cox model, pN-status, Slug, and N-cadherin expressions retained their significant values in predicting DFS (p = 0.0346, p = 0.0430, and p = 0.0214, respectively). Our data support the hypothesis of a mutual concurrence of EMT and angiogenesis in driving LSCC cells toward an aggressive phenotype. To better characterize the predictive performance of prognostic models based on EMT and angiogenesis, further large-scale prospective studies are required.

Funder

Università degli Studi di Padova

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3