Affiliation:
1. Biomedical Engineering Program, University of Victoria, Victoria, BC V8P 5C2, Canada
2. VoxCell BioInnovation Inc., Victoria, BC V8T 5L2, Canada
Abstract
Prior to clinical trials, preclinical testing of oncology drug candidates is performed by evaluating drug candidates with in vitro and in vivo platforms. For in vivo testing, animal models are used to evaluate the toxicity and efficacy of drug candidates. However, animal models often display poor translational results as many drugs that pass preclinical testing fail when tested with humans, with oncology drugs exhibiting especially poor acceptance rates. The FDA Modernization Act 2.0 promotes alternative preclinical testing techniques, presenting the opportunity to use higher complexity in vitro models as an alternative to in vivo testing, including three-dimensional (3D) cell culture models. Three-dimensional tissue cultures address many of the shortcomings of 2D cultures by more closely replicating the tumour microenvironment through a combination of physiologically relevant drug diffusion, paracrine signalling, cellular phenotype, and vascularization that can better mimic native human tissue. This review will discuss the common forms of 3D cell culture, including cell spheroids, organoids, organs-on-a-chip, and 3D bioprinted tissues. Their advantages and limitations will be presented, aiming to discuss the use of these 3D models to accurately represent human tissue and as an alternative to animal testing. The use of 3D culture platforms for preclinical drug development is expected to accelerate as these platforms continue to improve in complexity, reliability, and translational predictivity.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献