Abstract
Periostin (Pn) is involved in multiple processes of cancer progression. Previously, we reported that Pn expression is correlated with mesenchymal tumor markers and poor prognosis in triple-negative breast cancer (TNBC). In the TNBC xenograft model, chemotherapy increased expression of a Pn alternative splicing variant (ASV) with exon 21, and administration of the neutralizing antibody against Pn with exon 21 (Pn-21 Ab) overcame chemoresistance with a reduction in the mesenchymal cancer cell fraction. In the present study, the role of Pn ASV with exon 21 in TNBC progression has been addressed. We first established a stable cell line carrying a fluorescence-based splicing reporter. Pn-positive TNBC has higher expression of genes related to tumor-associated macrophage (TAM) recruitment and ECM-receptor interaction than Pn-negative cells. In a xenograft model, only Pn-positive cells initiated tumor formation, and the Pn-21 Ab suppressed tumor cell growth, accompanied by decreased M2 TAM polarization and the number of tumor vessels. These data suggest that cancer cell-derived Pn ASV educates TAMs and regulates angiogenesis, which in turn establishes a microenvironmental niche that is supportive of TNBC.
Funder
Japan Society for the Promotion of Science
Kurata Memorial Hitachi Science and Technology Foundation
Kondou Kinen Medical Foundation
Nanken-Kyoten, TMDU
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献