Preclinical Head and Neck Squamous Cell Carcinoma Models for Combined Targeted Therapy Approaches

Author:

Schoenwaelder Nina,Krause Mareike,Freitag Thomas,Schneider BjörnORCID,Zonnur Sarah,Zimpfer Annette,Becker Anne SophieORCID,Salewski Inken,Strüder Daniel Fabian,Lemcke HeikoORCID,Grosse-Thie Christina,Junghanss Christian,Maletzki ClaudiaORCID

Abstract

This study aimed to refine combined targeted approaches on well-characterized, low-passage tumor models. Upon in vivo xenografting in immunodeficient mice, three cell lines from locally advanced or metastatic HNSCC were established. Following quality control and basic characterization, drug response was examined after therapy with 5-FU, Cisplatin, and cyclin-dependent kinase inhibitors (abemaciclib, THZ1). Our cell lines showed different in vitro growth kinetics, morphology, invasive potential, and radiosensitivity. All cell lines were sensitive to 5-FU, Cisplatin, and THZ1. One cell line (HNSCC48 P0 M1) was sensitive to abemaciclib. Here, Cyto-FISH revealed a partial CDKN2a deletion, which resulted from a R58* mutation. Moreover, this cell line demonstrated chromosome 12 polysomy, accompanied by an increase in CDK4-specific copy numbers. In HNSCC16 P1 M1, we likewise identified polysomy-associated CDK4-gains. Although not sensitive to abemaciclib per se, the cell line showed a G1-arrest, an increased number of acidic organelles, and a swollen structure. Notably, intrinsic resistance was conquered by Cisplatin because of cMYC and IDO-1 downregulation. Additionally, this Cisplatin-CDKI combination induced HLA-ABC and PD-L1 upregulation, which may enhance immunogenicity. Performing functional and molecular analysis on patient-individual HNSCC-models, we identified CDK4-gains as a biomarker for abemaciclib response prediction and describe an approach to conquer intrinsic CDKI resistance.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3