Biomimetic Upconversion Nanoparticles and Gold Nanoparticles for Novel Simultaneous Dual-Modal Imaging-Guided Photothermal Therapy of Cancer

Author:

Wang Ruliang,Yang Han,Fu RongxinORCID,Su Ya,Lin Xue,Jin Xiangyu,Du Wenli,Shan Xiaohui,Huang Guoliang

Abstract

Multimodal imaging-guided near-infrared (NIR) photothermal therapy (PTT) is an interesting and promising cancer theranostic method. However, most of the multimodal imaging systems provide structural and functional information used for imaging guidance separately by directly combining independent imaging systems with different detectors, and many problems arise when trying to fuse different modal images that are serially taken by inviting extra markers or image fusion algorithms. Further, most imaging and therapeutic agents passively target tumors through the enhanced permeability and retention (EPR) effect, which leads to low utilization efficiency. To address these problems and systematically improve the performance of the imaging-guided PTT methodology, we report a novel simultaneous dual-modal imaging system combined with cancer cell membrane-coated nanoparticles as a platform for PTT-based cancer theranostics. A novel detector with the ability to detect both high-energy X-ray and low-energy visible light at the same time, as well as a dual-modal imaging system based on the detector, was developed for simultaneous dual-modal imaging. Cancer cell membrane-coated upconversion nanoparticles (CC-UCNPs) and gold nanoparticles (CC-AuNPs) with the capacity for immune evasion and active tumor targeting were engineered for highly specific imaging and high-efficiency PTT therapy. In vitro and in vivo evaluation of macrophage escape and active homologous tumor targeting were performed. Cancer cell membrane-coated nanoparticles (CC-NPs) displayed excellent immune evasion ability, longer blood circulation time, and higher tumor targeting specificity compared to normal PEGylated nanoparticles, which led to highly specific upconversion luminescence (UCL) imaging and PTT-based anti-tumor efficacy. The anti-cancer efficacy of the dual-modal imaging-guided PTT was also evaluated both in vitro and in vivo. Dual-modal imaging yielded precise anatomical and functional information for the PTT process, and complete tumor ablation was achieved with CC-AuNPs. Our biomimetic UCNP/AuNP and novel simultaneous dual-modal imaging combination could be a promising platform and methodology for cancer theranostics.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3