Development of a Radiomic-Based Model Predicting Lymph Node Involvement in Prostate Cancer Patients

Author:

Bourbonne VincentORCID,Jaouen VincentORCID,Nguyen Truong AnORCID,Tissot Valentin,Doucet Laurent,Hatt Mathieu,Visvikis Dimitris,Pradier Olivier,Valéri Antoine,Fournier Georges,Schick Ulrike

Abstract

Significant advances in lymph node involvement (LNI) risk modeling in prostate cancer (PCa) have been achieved with the addition of visual interpretation of magnetic resonance imaging (MRI) data, but it is likely that quantitative analysis could further improve prediction models. In this study, we aimed to develop and internally validate a novel LNI risk prediction model based on radiomic features extracted from preoperative multimodal MRI. All patients who underwent a preoperative MRI and radical prostatectomy with extensive lymph node dissection were retrospectively included in a single institution. Patients were randomly divided into the training (60%) and testing (40%) sets. Radiomic features were extracted from the index tumor volumes, delineated on the apparent diffusion coefficient corrected map and the T2 sequences. A ComBat harmonization method was applied to account for inter-site heterogeneity. A prediction model was trained using a neural network approach (Multilayer Perceptron Network, SPSS v24.0©) combining clinical, radiomic and all features. It was then evaluated on the testing set and compared to the current available models using the Receiver Operative Characteristics and the C-Index. Two hundred and eighty patients were included, with a median age of 65.2 y (45.3–79.6), a mean PSA level of 9.5 ng/mL (1.04–63.0) and 79.6% of ISUP ≥ 2 tumors. LNI occurred in 51 patients (18.2%), with a median number of extracted nodes of 15 (10–19). In the testing set, with their respective cutoffs applied, the Partin, Roach, Yale, MSKCC, Briganti 2012 and 2017 models resulted in a C-Index of 0.71, 0.66, 0.55, 0.67, 0.65 and 0.73, respectively, while our proposed combined model resulted in a C-Index of 0.89 in the testing set. Radiomic features extracted from the preoperative MRI scans and combined with clinical features through a neural network seem to provide added predictive performance compared to state of the art models regarding LNI risk prediction in PCa.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3