Neurocognitive Outcomes in Pediatric Patients Following Brain Irradiation

Author:

Weusthof Katharina,Lüttich Peggy,Regnery Sebastian,König Laila,Bernhardt DeniseORCID,Witt Olaf,Herfarth Klaus,Unterberg Andreas,Jungk Christine,Farnia Benjamin,Combs Stephanie E.,Debus Jürgen,Rieken Stefan,Harrabi SemiORCID,Adeberg SebastianORCID

Abstract

Advanced radiation techniques can reduce the severity of neurocognitive sequelae in young brain tumor patients. In the present analysis, we sought to compare neurocognitive outcomes after proton irradiation with patients who underwent photon radiotherapy (RT) and surgery. Neurocognitive outcomes were evaluated in 103 pediatric brain tumor patients (proton RT n = 26, photon RT n = 30, surgery n = 47) before and after treatment. Comparison of neurocognitive outcomes following different treatment modalities were analyzed over four years after treatment completion. Longitudinal analyses included 42 months of follow-up after proton RT and 55 months after photon RT and surgery. Neurocognitive assessment included standardized tests examining seven domains. A comparison of neurocognitive outcomes after RT (proton and photon with >90% additional surgery) and surgery showed no significant differences in any neurocognitive domain. Neurocognitive functioning tests after proton RT failed to identify alterations compared to baseline testing. Long-term follow up over four years after photon RT showed a decrease in non-verbal intelligence (−9.6%; p = 0.01) and visuospatial construction (−14.9%; p = 0.02). After surgery, there was a decline in non-verbal intelligence (−10.7%; p = 0.01) and processing speed (14.9%; p = 0.002). Differences in neurocognitive outcomes between RT and surgical cohorts in direct intermodal comparison at long-term follow-up were not identified in our study, suggesting that modern radiation therapy does not affect cognition as much as in the past. There were no alterations in long-term neurocognitive abilities after proton RT, whereas decline of processing speed, non-verbal intelligence, and visuospatial abilities were observed after both photon RT and surgery. Domains dependent on intact white matter structures appear particularly vulnerable to brain tumor treatment irrespective of treatment approach.

Funder

Dietmar Hopp Stiftung

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3