Endothelial Progenitor Cells Promote Osteosarcoma Progression and Invasiveness via AKT/PI3K Signaling

Author:

Doppelt-Flikshtain Ofri12,Younis Amin123,Tamari Tal12,Ginesin Ofir123ORCID,Shentzer-Kutiel Talia4,Nikomarov David5ORCID,Bar-Sela Gil26,Coyac Benjamin R.13,Assaraf Yehuda G.7,Zigdon-Giladi Hadar123ORCID

Affiliation:

1. Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109601, Israel

2. The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel

3. Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa 3109601, Israel

4. Thoracic Cancer Service, Rambam Health Campus, Haifa 3109601, Israel

5. Musculoskeletal Oncology Department, Rambam Health Campus, Haifa 3109601, Israel

6. Oncology Departmant, Emek Medical Center, Afula 1834111, Israel

7. The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel

Abstract

Background: Osteosarcoma (OS) mortality is attributed to lung metastases. Endothelial progenitor cells (EPCs) mediate the angiogenic switch in several cancers. The spatial proximity between EPCs and OS in the bone led to the hypothesis that EPCs-osteosarcoma interactions may possibly promote OS progression and aggressiveness. Methods: A PI3K inhibitor, Bevacizumab (an anti-VEGF-A antibody), and an anti-FGF2 antibody were added to the EPCs’ conditioned medium (EPC-CM), and their impacts on OS cell (U2-OS and 143B) proliferation, migration, invasion, MMP9 expression, and AKT phosphorylation were determined. The autocrine role of VEGF-A was assessed using Bevacizumab treatment and VEGF-A silencing in OS cells. Toward this end, an orthotopic mouse OS model was established. Mouse and human tumors were immunolabeled with antibodies to the abovementioned factors. Results: EPC-CM enhanced osteosarcoma MMP9 expression, invasiveness, and migration via the PI3K/AKT pathway. The addition of Bevacizumab and an anti-FGF2 antibody to the EPC-CM diminished OS cell migration. The autocrine role of VEGF-A was assessed using Bevacizumab and VEGF-A silencing in OS cells, resulting in decreased AKT phosphorylation and, consequently, diminished invasiveness and migration. Consistently, OS xenografts in mice displayed high VEGF-A and FGF2 levels. Remarkably, lung metastasis specimens derived from OS patients exhibited marked immunolabeling of CD31, VEGF-A, and FGF2. Conclusions: EPCs promote OS progression not only by physically incorporating into blood vessels, but also by secreting cytokines, which act via paracrine signaling. EPCs induced in vitro MMP9 overexpression, invasion, and migration. Additional animal studies are warranted to further expand these results. These findings may pave the way toward the development of novel EPCs-targeted therapeutics aimed at blocking OS metastasis.

Funder

Israel Cancer Association

The Rappaport Institute, Rappaport Faculty of Medicine, Technion, Haifa, Israel

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3