Abstract
(1) Background: The tumor microenvironment is involved in the growth and proliferation of malignant tumors and in the process of resistance towards systemic and targeted therapies. A correlation between the gene expression profile of the tumor microenvironment and the prognosis of ovarian cancer patients is already known. (2) Methods: Based on data from The Cancer Genome Atlas (379 RNA sequencing samples), we constructed a prognostic 11-gene signature (SNRPA1, CCL19, CXCL11, CDC5L, APCDD1, LPAR2, PI3, PLEKHF1, CCDC80, CPXM1 and CTAG2) for Fédération Internationale de Gynécologie et d’Obstétrique stage III and IV serous ovarian cancer through lasso regression. (3) Results: The established risk score was able to predict the 1-, 3- and 5-year prognoses more accurately than previously known models. (4) Conclusions: We were able to confirm the predictive power of this model when we applied it to cervical and urothelial cancer, supporting its pan-cancer usability. We found that immune checkpoint genes correlate negatively with a higher risk score. Based on this information, we used our risk score to predict the biological response of cancer samples to an anti-programmed death ligand 1 immunotherapy, which could be useful for future clinical studies on immunotherapy in ovarian cancer.
Funder
China Scholarship Council
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献