The Emerging, Multifaceted Role of WTAP in Cancer and Cancer Therapeutics

Author:

Ju Guomin1234,Lei Jiangchu1234,Cai Shuqi1234ORCID,Liu Siyuan1234,Yin Xinjia1234,Peng Chuanhui1234ORCID

Affiliation:

1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China

2. NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China

3. Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China

4. Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China

Abstract

Cancer is a grave and persistent illness, with the rates of both its occurrence and death toll increasing at an alarming pace. N6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotic organisms, is catalyzed by methyltransferases and has a significant impact on various aspects of cancer progression. WT1-associated protein (WTAP) is a crucial component of the m6A methyltransferase complex, catalyzing m6A methylation on RNA. It has been demonstrated to participate in numerous cellular pathophysiological processes, including X chromosome inactivation, cell proliferation, cell cycle regulation, and alternative splicing. A better understanding of the role of WTAP in cancer may render it a reliable factor for early diagnosis and prognosis, as well as a key therapeutic target for cancer treatment. It has been found that WTAP is closely related to tumor cell cycle regulation, metabolic regulation, autophagy, tumor immunity, ferroptosis, epithelial mesenchymal transformation (EMT), and drug resistance. In this review, we will focus on the latest advances in the biological functions of WTAP in cancer, and explore the prospects of its application in clinical diagnosis and therapy.

Funder

National Natural Science Foundation of China

Student Research Training Program

Student Research Practice Program

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3