Predicting Tumor Perineural Invasion Status in High-Grade Prostate Cancer Based on a Clinical–Radiomics Model Incorporating T2-Weighted and Diffusion-Weighted Magnetic Resonance Images

Author:

Zhang Wei,Zhang Weiting,Li Xiang,Cao Xiaoming,Yang Guoqiang,Zhang Hui

Abstract

Purpose: To explore the role of bi-parametric MRI radiomics features in identifying PNI in high-grade PCa and to further develop a combined nomogram with clinical information. Methods: 183 high-grade PCa patients were included in this retrospective study. Tumor regions of interest (ROIs) were manually delineated on T2WI and DWI images. Radiomics features were extracted from lesion area segmented images obtained. Univariate logistic regression analysis and the least absolute shrinkage and selection operator (LASSO) method were used for feature selection. A clinical model, a radiomics model, and a combined model were developed to predict PNI positive. Predictive performance was estimated using receiver operating characteristic (ROC) curves, calibration curves, and decision curves. Results: The differential diagnostic efficiency of the clinical model had no statistical difference compared with the radiomics model (area under the curve (AUC) values were 0.766 and 0.823 in the train and test group, respectively). The radiomics model showed better discrimination in both the train cohort and test cohort (train AUC: 0.879 and test AUC: 0.908) than each subcategory image (T2WI train AUC: 0.813 and test AUC: 0.827; DWI train AUC: 0.749 and test AUC: 0.734). The discrimination efficiency improved when combining the radiomics and clinical models (train AUC: 0.906 and test AUC: 0.947). Conclusion: The model including radiomics signatures and clinical factors can accurately predict PNI positive in high-grade PCa patients.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3