Beam Position Projection Algorithms in Proton Pencil Beam Scanning

Author:

Nesteruk Konrad P.12ORCID,Bradley Stephen G.1,Kooy Hanne M.12,Clasie Benjamin M.12ORCID

Affiliation:

1. Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA

2. Harvard Medical School, Boston, MA 02115, USA

Abstract

Beam position uncertainties along the beam trajectory arise from the accelerator, beamline, and scanning magnets (SMs). They can be monitored in real time, e.g., through strip ionization chambers (ICs), and treatments can be paused if needed. Delivery is more reliable and accurate if the beam position is projected from monitored nozzle parameters to the isocenter, allowing for accurate online corrections to be performed. Beam position projection algorithms are also used in post-delivery log file analyses. In this paper, we investigate the four potential algorithms that can be applied to all pencil beam scanning (PBS) nozzles. For some combinations of nozzle configurations and algorithms, however, the projection uses beam properties determined offline (e.g., through beam tuning or technical commissioning). The best algorithm minimizes either the total uncertainty (i.e., offline and online) or the total offline uncertainty in the projection. Four beam position algorithms are analyzed (A1–A4). Two nozzle lengths are used as examples: a large nozzle (1.5 m length) and a small nozzle (0.4 m length). Three nozzle configurations are considered: IC after SM, IC before SM, and ICs on both sides. Default uncertainties are selected for ion chamber measurements, nozzle entrance beam position and angle, and scanning magnet angle. The results for other uncertainties can be determined by scaling these results or repeating the error propagation. We show the propagation of errors from two locations and the SM angle to the isocenter for all the algorithms. The best choice of algorithm depends on the nozzle length and is A1 and A3 for the large and small nozzles, respectively. If the total offline uncertainty is to be minimized (a better choice if the offline uncertainty is not stable), the best choice of algorithm changes to A1 for the small nozzle for some hardware configurations. Reducing the nozzle length can help to reduce the gantry size and make proton therapy more accessible. This work is important for designing smaller nozzles and, consequently, smaller gantries. This work is also important for log file analyses.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3