Identification and Characterization of Aptamers Targeting Ovarian Cancer Biomarker Human Epididymis Protein 4 for the Application in Urine

Author:

Hanžek AntonijaORCID,Ducongé FrédéricORCID,Siatka Christian,Duc Anne-Cécile E.

Abstract

Ovarian cancer is the deadliest gynecological cancer. With non-specific symptoms of the disease and the lack of effective diagnostic methods, late diagnosis remains the crucial hurdle of the poor prognosis. Therefore, development of novel diagnostic approaches are needed. The purpose of this study is to develop DNA-based aptamers as potential diagnostic probes to detect ovarian cancer biomarker Human epididymis protein 4 (HE4) in urine. HE4 is a protein overexpressed in ovarian cancer, but not in healthy or benign conditions. With high stability and diagnostic value for detection of ovarian cancer, urine HE4 appears as an attractive non-invasive biomarker. The high-affinity anti-HE4 DNA aptamers were selected through 10 cycles of High Fidelity Systematic Evolution of Ligands by EXponential enrichment (Hi-Fi SELEX), a method for aptamer selection based on digital droplet PCR. The anti-HE4 aptamers were identified using DNA sequencing and bioinformatics analysis. The candidate aptamer probes were characterized in urine for binding to HE4 protein using thermofluorimetry. Two anti-HE4 aptamers, AHE1 and AHE3, displayed binding to HE4 protein in urine, with a constant of dissociation in the nanomolar range, with Kd (AHE1) = 87 ± 9 nM and Kd (AHE3) aptamer of 127 ± 28 nM. Therefore, these aptamers could be promising tools for application in diagnostics and future development of urine tests or biosensors for ovarian cancer.

Funder

Région Occitanie

the Université de Nîmes and the UPR CHROME from Université de Nîmes

Novosanis-European Association for Cancer Research (EACR) grant 2021 “Cancer biomarkers detection in urine”

the Agence Nationale pour la Recherche

Investissement d’Avenir

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3