Comprehensively Exploring the Mutational Landscape and Patterns of Genomic Evolution in Hypermutated Cancers

Author:

Lin Peng-ChanORCID,Yeh Yu-Min,Hsu Hui-PingORCID,Chan Ren-Hao,Lin Bo-Wen,Chen Po-Chuan,Pan Chien-Chang,Hsu Keng-FuORCID,Hsiao Jenn-Ren,Shan Yan-ShenORCID,Shen Meng-Ru

Abstract

Tumor heterogeneity results in more than 50% of hypermutated cancers failing to respond to standard immunotherapy. There are numerous challenges in terms of drug resistance, therapeutic strategies, and biomarkers in immunotherapy. In this study, we analyzed primary tumor samples from 533 cancer patients with six different cancer types using deep targeted sequencing and gene expression data from 78 colorectal cancer patients, whereby driver mutations, mutational signatures, tumor-associated neoantigens, and molecular cancer evolution were investigated. Driver mutations, including RET, CBL, and DDR2 gene mutations, were identified in the hypermutated cancers. Most hypermutated endometrial and pancreatic cancer patients carry genetic mutations in EGFR, FBXW7, and PIK3CA that are linked to immunotherapy resistance, while hypermutated head and neck cancer patients carry genetic mutations associated with better treatment responses, such as ATM and BRRCA2 mutations. APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) and DNA repair defects are mutational drivers that are signatures for hypermutated cancer. Cancer driver mutations and other mutational signatures are associated with sensitivity or resistance to immunotherapy, representing potential genetic markers in hypermutated cancers. Using computational prediction, we identified NF1 p.T700I and NOTCH1 p.V2153M as tumor-associated neoantigens, representing potential therapeutic targets for immunotherapy. Sequential mutations were used to predict hypermutated cancers based on genomic evolution. Using a logistic model, we achieved an area under the curve (AUC) = 0.93, accuracy = 0.93, and sensitivity = 0.81 in the testing set. The sequential patterns were distinct among the six cancer types, and the sequential mutation order of MSH2 and the coexisting BRAF genetic mutations influenced the hypermutated phenotype. The TP53~MLH1 and NOTCH1~TET2 sequential mutations impacted colorectal cancer survival (p-value = 0.027 and 0.0001, respectively) by reducing the expression of PTPRCAP (p-value = 1.06 × 10−6) and NOS2 (p-value = 7.57 × 10−7) in immunity. Sequential mutations are significant for hypermutated cancers, which are characterized by mutational heterogeneity. In addition to driver mutations and mutational signatures, sequential mutations in cancer evolution can impact hypermutated cancers. They characterize potential responses or predictive markers for hypermutated cancers. These data can also be used to develop hypermutation-associated drug targets and elucidate the evolutionary biology of cancer survival. In this study, we conducted a comprehensive analysis of mutational patterns, including sequential mutations, and identified useful markers and therapeutic targets in hypermutated cancer patients.

Funder

Ministry of Science and Technology, Taiwan

Ministry of Health and Welfare

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3