Integrated Multi-Omics Profiling of Young Breast Cancer Patients Reveals a Correlation between Galactose Metabolism Pathway and Poor Disease-Free Survival

Author:

Han Xiangchen123ORCID,Han Boyue123,Luo Hong3,Ling Hong12,Hu Xin23

Affiliation:

1. Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China

2. Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China

3. Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai 200032, China

Abstract

In recent years, there has been a notable rise in the incidence of breast cancer among young patients, who exhibit worse survival outcomes and distinct characteristics compared to intermediate and elderly patients. Therefore, it is imperative to identify the specific features unique to young patients, which could offer insights into potential therapeutic strategies and improving survival outcomes. In our study, we performed an integrative analysis of bulk transcriptional and genomic data from extensive clinical cohorts to identify the prognostic factotrs. Additionally, we analyzed the single-cell transcriptional data and conducted in vitro experiments. Our work confirmed that young patients exhibited higher grading, worse disease-free survival (DFS), a higher frequency of mutations in TP53 and BRCA1, a lower frequency of mutations in PIK3CA, and upregulation of eight metabolic pathways. Notably, the galactose metabolism pathway showed upregulation in young patients and was associated with worse DFS. Further analysis and experiments indicated that the galactose metabolism pathway may regulate the stemness of cancer cells and ultimately contribute to worse survival outcomes. In summary, our finding identified distinct clinicopathological, transcriptional, and genomics features and revealed a correlation between the galactose metabolism pathway, stemness, and poor disease-free survival of breast cancer in young patients.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Innovation Action Plan

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3