A Systematic Review of Amino Acid PET Imaging in Adult-Type High-Grade Glioma Surgery: A Neurosurgeon’s Perspective

Author:

De Marco RaffaeleORCID,Pesaresi Alessandro,Bianconi AndreaORCID,Zotta Michela,Deandreis DésiréeORCID,Morana Giovanni,Zeppa PietroORCID,Melcarne Antonio,Garbossa DiegoORCID,Cofano Fabio

Abstract

Amino acid PET imaging has been used for a few years in the clinical and surgical management of gliomas with satisfactory results in diagnosis and grading for surgical and radiotherapy planning and to differentiate recurrences. Biological tumor volume (BTV) provides more meaningful information than standard MR imaging alone and often exceeds the boundary of the contrast-enhanced nodule seen in MRI. Since a gross total resection reflects the resection of the contrast-enhanced nodule and the majority of recurrences are at a tumor’s margins, an integration of PET imaging during resection could increase PFS and OS. A systematic review of the literature searching for “PET” [All fields] AND “glioma” [All fields] AND “resection” [All fields] was performed in order to investigate the diffusion of integration of PET imaging in surgical practice. Integration in a neuronavigation system and intraoperative use of PET imaging in the primary diagnosis of adult high-grade gliomas were among the criteria for article selection. Only one study has satisfied the inclusion criteria, and a few more (13) have declared to use multimodal imaging techniques with the integration of PET imaging to intentionally perform a biopsy of the PET uptake area. Despite few pieces of evidence, targeting a biologically active area in addition to other tools, which can help intraoperatively the neurosurgeon to increase the amount of resected tumor, has the potential to provide incremental and complementary information in the management of brain gliomas. Since supramaximal resection based on the extent of MRI FLAIR hyperintensity resulted in an advantage in terms of PFS and OS, PET-based biological tumor volume, avoiding new neurological deficits, deserves further investigation.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3